LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - PHYSICS
 FOURTH SEMESTER - APRIL 2010
 PH 4504/PH 4502/PH 6604 - MATHEMATICAL PHYSICS

Date \& Time: 21/04/2010 / 9:00-12:00 Dept. No.
Max. : 100 Marks

PART - A

Answer ALL the questions
(10 $\times 2=20$ marks)

1. Show that the complex variable $f(x)=|z|^{2}$ is differentiable only at the origin.
2. Define logarithm of a complex variable.
3. Find the value of $c_{c} \int(x+y) d x+x^{2} y d y$ along $y=x^{2}$ having $(0,0),(3,9)$ end points.
4. The complex integral ${ }_{c} \int \tan (2 m z) d z$, where c is the closed curve $|z|=1$ is \qquad .
5. Write down the equation of two dimensional heat flow at steady state.
6. Solve the wave equation $\partial^{2} u / \partial t^{2}=C^{2}\left(\partial^{2} u / \partial x^{2}\right)$ under the conditions $u=0$ when $x=0$ and $x=\pi$.
7. Write down Parseval's formula.
8. Express $\mathrm{f}(\mathrm{x})=\mathrm{x}$ as a sine series in the interval $0<\mathrm{x}<\pi$.
9. Find the missing $y x$ values from the first differences provided

y_{x}	0	1	3	7	-	-
$\Delta \mathrm{y}_{\mathrm{x}}$	0	1	2	4	7	11

10. Write down Simpson's one third rule.

PART - B

Answer any FOUR questions
11. Find the general value of $\log (1+i)+\log (1-i)$
12. Find the value of $d(z+4) /\left(z^{2}+2 z+5\right) d z$, if c is a circle $|z+1|=1$.
13. Find the solution of the wave function $\partial^{2} y / \partial t^{2}=C^{2}\left(\partial^{2} y / \partial x^{2}\right)$. Given that $y(x, \theta)=0$ for $\mathrm{x}=0$ and if $(\mathrm{x}, \theta)=\mathrm{v}$ for $\mathrm{x}=0$.
14. Find the Fourier series representing $f(x)=x, 0<x<2 \pi$ and sketch its graph from $x=-4 \pi$ to $x=4 \pi$.
15. Find the value of x when $y=85$, using Lagrange's formula from the following table

x	2	5	8	14
y	94.8	87.9	81.3	68.7

PART-C

Answer any Four questions

16. State and explain the theorem for a function $f(x)$ to be analytic and also derive the sufficient condition for the function to be analytic.
17. Find the value of the integral $0 \int^{1+i}\left(x-y+i x^{2}\right) d z$
a) along the straight line from $z=0$ to $z=1+i$
b) along real axis from $z=0$ to $z=1$ and then along a line parallel to the imaginary axis from $z=1$ to $z=1+i$.
18. A tightly stretched string with fixed end points at $x=0$ and $x=1$ is initially in a position given by $y=y_{0} \sin 3(\Delta x / i)$. If it is released from rest from this position ,find the displacement $y(x, t)$.
19. a) Derive the Fourier coefficients.
b) Obtain the complex form of the Fourier series of the function

$$
\begin{array}{rlrl}
f(x) & =0 & -\pi<=x<=0 \\
& =1 & 0<=x<=\pi
\end{array}
$$

20. Derive Newton's interpolation formula. Derive the Trapezoidal and Simpson's rule.
